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Synthesis of a new tricyclic 3-(tetrazol-5-yl)pyridine system from
2-(azidomethyl)nicotinonitriles
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Abstract—2-Methyl-3-cyanopyridines were converted into the corresponding 2-azidomethyl derivatives, which then underwent an
intramolecular cycloaddition reaction. A novel heterocyclic system containing a 3-(tetrazol-5-yl)pyridine unit was obtained in this
way.
� 2004 Elsevier Ltd. All rights reserved.
We have recently reported the synthesis of 3-(tetrazol-5-
yl)pyridines 1 from sterically hindered nicotinonitriles
2.1 These polysubstituted nicotinonitriles 2 could be
starting compounds in the synthesis of various core
structures for combinatorial libraries (e.g., derivatives
3). The core structures must contain two or more func-
tional groups as derivatization points that could be posi-
tioned at C-4 of the aryl fragment 4-aryl (3, R1) and/or
on the 3-azolyl fragment. However, it would be of great
interest to introduce an aliphatic functional group into
the core system (Scheme 1).
0040-4039/$ - see front matter � 2004 Elsevier Ltd. All rights reserved.
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Scheme 1. Nicotinonitriles 2 and their 3-azolyl derivatives 1, 3.
We describe here the functionalization of the 2-methyl
group in structures 2 and the application of the deriva-
tives thus obtained in the synthesis of the novel hetero-
cyclic system 10.

To functionalize the methyl substituent, we used the
well-known rearrangement2 of pyridine N-oxides 5a–c
under acylation conditions as the key step. The use of
trifluoroacetic anhydride gave rise to labile trifluoroace-
tates 6a–c, very smoothly under mild conditions which
were easily converted into alcohols 7a–c by treatment
with methanol.3 Interestingly, two isomeric alcohols 7c
and 7d were obtained from 3-methyl-5,6,7,8-tetrahydro-
isoquinoline-4-carbonitrile 4c in yields of 23% and 31%,
respectively (Scheme 2). Introduction of a hydroxy
group to an alkyl group at position 4 of a pyridine ring
in that manner has been previously described.4

Compounds 7 were used to prepare azides 9 in which an
intramolecular reaction between a cyano and an azido
group, previously unknown in a heterocyclic series was
accomplished (Scheme 3). The 2-azidomethyl-3-cyano-
pyridines 9a–c were prepared in two steps, starting from
the 2-hydroxymethyl derivatives 7a–c. Treatment of the
alcohols 7a–c with mesyl chloride gave rise directly to
the desired 2-chloromethyl intermediates 8a–c. Reaction
with NaN3 gave 2-azidomethyl-3-cyanopyridines 9a–c
which were cyclized on heating in toluene solution at
130–140 �C.5 It is significant to note that a high purity
of the azides 9a–c and a low concentration are crucial
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Figure 1. X-ray crystal structure of compound 10a.

N

Me

N

N

Me

O

N

N

N
OCOCF3

N

N
OH

N

Me

O

N

N

N
OH

N

N
OH

4a-c 5a-c

+ -

6a-c 7a-c

i ii iii

a: R1 = t-Bu, R2 = H
b: R1 = Ph, R2 = H
c: R1R2 = -(CH2)4-

R1

R2

R1

R2

R1

R2

R1

R2

5c

+ -
7d (31%)

ii,  iii

7c (23%)

+

51-94% 23-85%

Scheme 2. Functionalization of the methyl group in 2-methyl-3-cyanopyridines 4a–c. Reagents and conditions: (i) H2O2, AcOH, 70�C; (ii)
(CF3CO)2O, CH2Cl2, 50�C; (iii) MeOH, rt.
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for successful cyclization. Furthermore, the flexibility of
the azidomethyl group is also very important because
while azidomethylated intermediate 9c was cyclized
smoothly, no product of the intermolecular reaction in
the corresponding azidomethylated compound prepared
from isomer 7d could be obtained under various condi-
tions. Very few examples of similar intramolecular
tetrazole formation reactions have been reported in the
literature.6

As a result of this work, the new heterocyclic system, 10,
5H-tetrazolo[1 0,5 0:1,5]pyrrolo[3,4-b]pyridine was ob-
tained. This could serve not only as a template for com-
binatorial libraries but also as a very interesting subject
for further investigation.7 The structures of compounds
5a–c to 10a–c were confirmed by 1H NMR, 13C NMR
and IR spectroscopy. The assignment of the 1H and
13C NMR spectra involved HSQC and HMBC experi-
ments. In addition, X-ray crystallographic analysis une-
quivocally confirmed the structure of compound 10a
(Fig. 1).8 The IR spectrum of the 2-azidomethyl-3-
cyanopyridine 9b demonstrated two intense bands, as-
signed to the azido and cyano groups at 2110 and
2218cm�1, respectively. Both bands disappeared after
cyclization.

In conclusion, we have demonstrated a principle where-
by an aromatic nitrile group undergoes an intramole-
cular reaction with an azido moiety attached to the
aromatic ring through an alkyl chain.
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